

US005880467A

United States Patent [19]

Martinis et al.

[11] Patent Number:

5,880,467

[45] **Date of Patent:**

Mar. 9, 1999

[54] MICROCALORIMETER X-RAY DETECTORS WITH X-RAY LENS

[75] Inventors: John Matthew Martinis; Gene
Charles Hilton, both of Boulder; Kent
David Irwin, Lyons; David Anders
Wollman, Louisville, all of Color:

Wollman, Louisville, all of Colo.; Robert Gregory Downing, Niskayuna; Walter Maxwell Gibson, Voorheesville, both of N.Y.

[73] Assignee: The United States of America as represented by the Secretary of

Commerce, Washington, D.C.

[21] Appl. No.: 811,939

[56]

[22] Filed: Mar. 5, 1997

 [51] Int. Cl.6
 G02B 5/124

 [52] U.S. Cl.
 250/310

 [58] Field of Search
 250/310, 306,

250/307, 505.1; 378/43, 145

References Cited

U.S. PATENT DOCUMENTS

4,953,188 8/1990 Siegal et al. 378/2 5,119,411 6/1992 Nakamura et al. 378/2 5,192,869 3/1993 Kumakhov et al. 250/50: 5,204,887 4/1993 Hayashida et al. 378/ 5,210,779 5/1993 Vali et al. 378/ 5,434,901 7/1995 Nagai 378/ 5,497,008 3/1996 Kumakhov et al. 250/50: 5,550,887 8/1996 Schmal et al. 378/	5,192,869 5,204,887 5,210,779 5,434,901 5,497,008	11/1977 8/1990 6/1992 3/1993 4/1993 5/1993 7/1995 3/1996	Nakamura et al. 378/206 Kumakhov et al. 250/505.1 Hayashida et al. 378/43 Vali et al. 378/84 Nagai 378/43 Kumakhov et al. 250/505.1
--	---	---	---

OTHER PUBLICATIONS

Irwin, Hilton, Wollman, & Cabrera, "A Hot–Electron Microcalorimeter for X–Ray Detection Using a Superconducting Transition–Edge Sensor Microcalorimeter with Electrothermal Feedback," *Elsevier Science*, Jan. 1996, pp. 177–179. Bly & Gibson, "Polycapillary Optics Focus and Collimate X–Rays", *Lasers Focus World*, Mar. 1996.

Irwin, Hilton, Wollman & Martinis, "X-Ray Detection Using a Superconducting Transition-Edge Sensor Microcalorimeter with Electrothermal Feedback," *Appl. Phys. Lett.* 69 (13), Sep. 23, 1996, pp. 1945–1947.

Primary Examiner—Kiet T. Nguyen Attorney, Agent, or Firm—Charles E. Rohrer, P.C.

[57] ABSTRACT

Spectroscopic materials analysis wherein a sample under test is bombarded by electrons in a scanning electron microscope to produce an x-ray emission collected over a large solid angle by a polycapillary lens and focused onto the surface of a microcalorimeter detector. The x-ray lens is used to increase the effective collection area of the microcalorimeter detector used in an x-ray spectrometer. By increasing the collection angle, the time period for x-ray collection is reduced and the detector can be located farther from the x-ray source. The x-ray lens is effective over a broad energy range of x-rays, thus providing compatibility with spectroscopic analysis. The microcalorimeter can be calibrated to compensate for any variations in the transmission efficiency of the x-ray lens.

17 Claims, 1 Drawing Sheet

